Preparation and Structure of a New Germanium Clathrate, Ba₂₄Ge₁₀₀

Hiroshi Fukuoka,^{1,*} Kazuhito Iwai,* Shoji Yamanaka,*^{,†} Hideki Abe,‡ Kenji Yoza,§ and Ludger Häming§

*Department of Applied Chemistry, Faculty of Engineering, Hiroshima University, Higashi-Hiroshima 739-8527, Japan; †CREST, Japan Science and Technology Corporation (JST); ‡National Research Institute for Metal (NRIM); and §Bruker Japan Co., Ltd.

Received October 13, 1999; in revised form January 14, 2000; accepted January 20, 2000

Single crystals of a new germanium clathrate, Ba₂₄Ge₁₀₀, were synthesized by the Czochralsky pulling method using a tetra-arc furnace under an Ar atmosphere. The crystal structure was studied by X-ray single-crystal analysis. The clathrate crystallized in the cubic space group $P4_132$ with a = 14.5635(7) Å, V = 3088.9(2) Å³. The final refinement using 903 unique reflections converged at R = 0.032 and $R_w = 0.036$. In the structure, germanium atoms are linked by $sp^3 \sigma$ -bonds to form a threedimensional network, in which barium atoms are enclosed. There are three sites for the barium atoms having different coordination environments. One site is in a Ge₂₀ dodecahedron and the others are coordinated with 20 Ge atoms and 8 Ge atoms, respectively. © 2000 Academic Press

Key Words: germanium clathrate.

INTRODUCTION

There are two types of silicon clathrate compounds, $M_x \text{Si}_{46}$ and $M_x \text{Si}_{136}$ (M = Na, K, Rb, and Cs), which are isomorphous with the well-known gas hydrates, type I, $G_x(H_2O)_{46}$, and type II, $G_x(H_2O)_{136}$ (1, 2), respectively. In the gas hydrates, water molecules are linked by hydrogen bonds to form three-dimensional networks with cages, in which various gas molecules such as methane, Ar, and CO₂ are trapped. In the silicon clathrate compounds, the H-O ... H hydrogen bonds of the gas hydrates are replaced with Si-Si covalent bonds. The type I silicon clathrate compounds, $M_x Si_{46}$, are composed of Si_{20} dodecahedra and Si₂₄ tetrakaidecahedra. The Si polyhedra are connected by face sharing, alkali metals (M) being placed in the center of the polyhedra. The type II silicon clathates, $M_x Si_{136}$, are similarly composed of Si20 dodecahedra and Si28 hexakaidecahedra. Alkali metal-containing silicon clathrate compounds were extensively studied by a French group in the late 1960s (1-3). Recently, we have succeeded in the synthesis of Ba-containing silicon clathrate compounds, $(M, \operatorname{Ba})_x \operatorname{Si}_{46} (M = \operatorname{Na}, K)$ (4, 5), and have found that they showed superconductivity with a transition temperature of about 4 K (4-6). This is the first superconductor having an Si sp³ covalent network. Alkali metal-doped silicon clathrate compounds are prepared from Zintl monosilicides (MSi) by partial removal of the alkali metals by thermal treatment. The Zintl monosilicides, MSi (or M_4Si_4), consist of $[Si_4]^{4-}$ Zintl anions (7-9), which would be linked together to form a silicon sp^3 network by the removal of alkali metals, leaving part of the alkali atoms in the silicon cages. Barium-containing Zintl phase BaSi₂ (or Ba₂Si₄) also consists of Si₄ Zintl anions (10). It was expected that the removal of Ba atoms from BaSi2 would result in Ba-containing silicon clathrate compounds. However, the removal of Ba from BaSi₂ required a very high temperature, and formed only a mixture of Si and BaSi₂. In our synthesis of the Ba-containing silicon clathrate compound, we first prepared a solid solution between BaSi₂ and NaSi, and then Na atoms were removed at moderate temperatures (6). The resulting product contained BaSi2 and a Ba-containing silicon clathrate compound, (Na, $Ba)_x Si_{46}$; $BaSi_2$ could be removed by washing with water. Silicon clathrate compounds thus prepared contained Na as well as Ba atoms in the silicon cages; the Na atoms mainly occupied the Si₂₀ cages, and the Ba atoms were in the Si₂₄ cages. The ideal composition should be Na2Ba6Si46. Recently, we have succeeded in the synthesis of Ba₈Si₄₆ by using high-pressure and high-temperature conditions (11). Ba atoms occupy all of the Si₂₀ and Si₂₄ cages of the clathrate structure. The compound became a superconductor with a transition temperature of 8.0 K.

There are also two types of alkali metal-containing germanium clatharate compounds, type I, M_x Ge₄₆, and type II, M_x Ge₁₃₆ (M =Na, K, and Rb) (1, 2, 12). In this study, an attempt has been made to prepare a Ba-containing germanium clathrate. In the first step, a solid solution of BaGe₂ (13, 14) and NaGe (9, 15) was prepared by a method similar to that used for the preparation of (Na, Ba)_xSi₄₆. A solid solution BaNa₂Ge₄ was obtained and Na was removed by evaporation at elevated temperatures.

¹ To whom correspondence should be addressed. Fax: 81-824-22-7191. E-mail: hfukuoka@ipc.hiroshima-u.ac.jp.

However, all of the Na atoms were removed from the system to form a compound with a composition of BaGe₄. The presence of this compound was already reported (16, 17), but the structure was still unknown. In this study BaGe₄ was prepared by the arc melting method. It was anticipated that determining the structure of BaGe₄ would give important information about the intermediate product between Zintl phase and clathrate. Here we report the preparation of the single crystals of BaGe₄ and the X-ray single-crystal analysis. It has been found that BaGe₄ should have a composition of Ba₂₄Ge₁₀₀, and has a germanium clathrate network similar to K₈Sn₂₅ (18), K₆Sn₂₅ (19), and Ba₆In₄Ge₂₁ (20, 21).

EXPERIMENTAL

 $Ba_{24}Ge_{100}$ was synthesized using arc furnaces. A mixture of barium and germanium in a mole ratio of 1:4 was melted in an arc furnace under an Ar atmosphere. The reaction immediately finished and a bulk product having a metallic luster was obtained. Single crystals were obtained by the Czochralsky pulling method using a tetra-arc furnace under an Ar atmosphere. The compositions of the product were determined by using an X-ray microanalyzer (JEOL JSM-840F).

A single crystal suitable for the structure analysis was selected from the pulled-up grown crystals. Intensity data

TABLE 1				
Crystallo	ographic	Data	for	Ba24Ge100

Formula	$Ba_{24}Ge_{100}$
Formula weight	1319.39
Space group	<i>P</i> 4 ₁ 32 (No. 213)
a (Å)	14.5635(7)
V (Å ³)	3088.9(2)
Ζ	1
F_{000} electrons	4544
Linear absorption coefficient (cm ⁻¹)	313.8
T (K) of data collection	293
Crystal size (mm)	$0.35 \times 0.15 \times 0.05$
Diffractometer	Bruker Smart 1000 CCD system
Radiation (graphite monochromated)	MoKα, 0.7107 Å
Collection region	$-14 \le h \le 14$
	$0 \le k \le 20$
	$0 \le l \le 20$
2θ limit	$4 \le 2\theta \le 61$
No. of measured reflections	4696
No. of used reflections (with $ F_0 > 3\sigma F_0 $)	903
No. of variable parameters	49
R, R_{w}^{a}	0.0331, 0.0363
Goodness of fit, S^b	1.93
Residual density ^c (e Å ⁻³)	2.2

 ${}^{a} R = \sum (||F_{o}| - |F_{c}||) / \sum |F_{o}|, R_{w} = \sum (|F_{o}| - |F_{c}|)^{2} / \sum w F_{o}^{2}]^{1/2} (w = 1 / \sigma (F_{o})^{2}).$ ${}^{b} S = [w(|F_{o}| - |F_{c}|)^{2} / (N_{observns} - N_{parameters})]^{1/2}.$

^c The highest residual electrons of the final difference Fourier map.

 TABLE 2

 Atomic Parameters for Ba₂₄Ge₁₀₀ with Standard Deviations in Parentheses

Atom	Wyckoff site	x	У	Ζ	$U_{\rm iso}({\rm \AA}^2)$
Ge(1)	8 <i>c</i>	0.03046(12)	0.03046(12)	0.03046(12)	0.0284(7)
Ge(2)	24 <i>e</i>	0.20297(11)	0.04252(10)	0.00014(10)	0.0195(8)
Ge(3)	12d	$\frac{1}{8}$	0.16907(10)	0.41907(10)	0.0204(8)
Ge(4)	24 <i>e</i>	0.23965(10)	0.93497(11)	0.87355(11)	0.0191(8)
Ge(5)	24 <i>e</i>	0.41558(11)	0.85259(11)	0.08346(10)	0.0207(8)
Ge(6)	8 <i>c</i>	0.32523(10)	0.32523(10)	0.32523(10)	0.0176(5)
Ba(1)	8 <i>c</i>	0.18988(6)	0.18988(6)	0.18988(6)	0.0211(3)
Ba(2)	4b	7	7	7	0.0265(5)
Ba(3)	12 <i>d</i>	$\frac{1}{8}$	0.81026(9)	0.06026(9)	0.0597(9)

were collected on the SMART 1000 CCD-equipped diffractometer (Bruker Japan) using monochromated Mo $K\alpha$ radiation. The structure was determined using the software SHELXS97 (22). The final refinement was performed by the full-matrix least-squares method using the program ANYBLK (23).

RESULTS AND DISCUSSIONS

The composition of the crystals obtained by the Czochralsky method was determined to be $BaGe_{3.94}$ by X-ray microanalysis. This compound crystallized in the cubic space group $P4_132$ (No. 213) with a = 14.5635(7) Å. X-ray single-crystal analysis revealed that the composition was $Ba_{24}Ge_{100}$ ($BaGe_{4.17}$), which was slightly different from the nominal composition determined by X-ray microanalysis. This difference was probably caused by a contamination of $BaGe_2$ and Ge in the samples used for the microanalysis, in addition to the standard deviation of the experimental data. The crystallographic data for $Ba_{24}Ge_{100}$ are listed in Table 1. The atomic parameters and thermal vibrational parameters are given in Tables 2 and 3.

 TABLE 3

 Thermal Vibrational Parameters for Ba₂₄Ge₁₀₀ with Standard Deviations in Parentheses

Atom	U_{11}	U_{22}	U_{33}	U_{12}	U_{13}	U_{23}
Ge(1)	0.0284(7)	0.0284(7)	0.0284(7)	0.0014(7)	0.0014(7)	0.0014(7)
Ge(2)	0.0202(8)	0.0194(8)	0.0189(8)	0.0012(6)	0.0013(6)	-0.0014(6)
Ge(3)	0.0216(11)	0.0198(7)	0.0198(7)	-0.0012(7)	0.0012(7)	0.0035(9)
Ge(4)	0.0184(8)	0.0197(7)	0.0193(8)	-0.0007(6)	0.0008(6)	-0.0025(6)
Ge(5)	0.0247(8)	0.0198(8)	0.0177(8)	-0.0017(7)	0.0006(7)	0.0008(6)
Ge(6)	0.0176(5)	0.0176(5)	0.0176(5)	-0.0020(6)	-0.0020(6)	-0.0020(6)
Ba(1)	0.0211(3)	0.0211(3)	0.0211(3)	0.0009(4)	0.0009(4)	0.0009(4)
Ba(2)	0.0265(5)	0.0265(5)	0.0265(5)	0.0063(6)	0.0063(6)	0.0063(6)
Ba(3)	0.113(2)	0.0329(6)	0.0329(6)	0.0025(7)	-0.0025(7)	0.0060(8)

FIG. 1. Structure of $Ba_{24}Ge_{100}$ illustrating a helical array of Ge_{20} dodecahedral units.

The crystal structure of $Ba_{24}Ge_{100}$ is given in Fig. 1, where only the network of germanium atoms is shown. The germanium network can be characterized as the interconnection of Ba-containing Ge_{20} dodecahedra $Ba@Ge_{20}$, which are illustrated as shaded polyhedra in Fig. 1. These polyhedra share their three pentagonal faces with each other to form a complicated three-dimensional network like a "jungle gym." In the projection along a unit cell axis, a helical array of Ge_{20} dodecahedra can be seen (Fig. 1). The Ge_{20} dodecahedron is almost regular (Fig. 2a). The Ge_{20} dodecahedral units alone cannot fill all spaces; therefore, this structure has two types of interstices. The shapes of the interstices are shown in Figs. 2b and 2c. One is a Ge_{20} open cage composed of six pentagonal faces and two open square windows (Fig. 2c). The other is a pseudo-cubic space surrounded by eight Ge atoms (Fig. 2b). The germanium network of $Ba_{24}Ge_{100}$ is composed of these three structural units; the Ge_{20} pentagonal dodecahedron with the Ba(1)atom, the Ge_{20} open cage with the Ba(3) atom, and the pseudo-cubic space with the Ba(2) atom.

Selected bond distances and angles for $Ba_{24}Ge_{100}$ are listed in Table 4. The average bond distance for the Ge–Ge bonds is 2.538 Å, which is 0.09 Å longer than that in the element, 2.450 Å. In $Ba_{24}Ge_{100}$, all germanium atoms have sp^3 -hybridized orbitals, but 32 out of 100 of germanium atoms have only three σ -bonds with three different germanium atoms. Each of the remaining 68 germanium atoms has four σ -bonds. The chemical formula of $Ba_{24}Ge_{100}$ is, therefore, described as $Ba_{24}[(3b-Ge)_{32}(4b-Ge)_{68}]$. In this

FIG. 2. ORTEP drawings for the three structural units of $Ba_{24}Ge_{100}$: (a) $Ba(1)@Ge_{20}$ dodecahedron, (b) $Ba(2)Ge_8$ pseudo-cubic, and (c) $Ba(3) Ge_{20}$ open cage with 50% probability.

formation, 16 electrons are excessively donated to the germanium host network. Ge(1) and Ge(5) in Table 2 are bonded to three germanium atoms and one Ba(2) atom forming the Ge₈ pseudo-cubic spaces (Fig. 2b). Bond angles for normal germanium atoms having four σ -bonds are 101.3–119.1°, while the three σ -bonded germanium atoms have smaller angles of 96.6–102.9°.

The structure of this germanium network is isotypic with those of K_8Sn_{25} ($K_{32}Sn_{100}$) (18) and K_6Sn_{25} ($K_{24}Sn_{100}$) (19). In $Ba_{24}Ge_{100}$ and K_6Sn_{25} , the Ba(3) and the corresponding K atom are on 12d special positions which are at the center of the Ge₂₀ open cages, respectively. On the other hand, in K₈Sn₂₅ the K atoms are placed on 24e general positions near the center of the Sn₂₀ open cages. The number of the guest metal atoms in the unit cell is, therefore, different between these two Sn₂₅ compounds. In the reported K₈Sn₂₅ structure, two K atoms on the 24e site are very close with a distance of 2.9 Å. In our refinement, the thermal vibrational parameters for the all atoms sites are well defined on the reasonable values. The residual density also showed no excess atoms in the unit cell. We, therefore, concluded that the composition of our germanium clathrate was $Ba_{24}Ge_{100}$, in accordance with K_6Sn_{25} . Recently, the crystal structure of Ba₆In₄Ge₂₁ (21) was reported. This compound is isotypic with Ba₂₄Ge₁₀₀ and all indium atoms participate in the germanium network as (4b-) atoms.

Note that the barium-containing pentagonal dodecahedra (Ba@Ge20) are the fundamental structural units in Ba₂₄Ge₁₀₀ as well as in the type I and type II clathrates. The chemical formulas of type I and type II germanium clathrates are $M_8 \text{Ge}_{46-x}$ and $M_x \text{Ge}_{136}$, respectively. All three germanium clathrates belong to the cubic system with different ways of packing of the Ge₂₀ dodecahedra. In Ba₂₄Ge₁₀₀ and the type II clathrate, face-sharing dodecahedra are found in their structures, while in the type I clathrate the dodecahedra are isolated and are mutually connected through Ge₂₄ tetrakaidecahedra by face sharing. A remarkable similarity between $Ba_{24}Ge_{100}$ and the type I clathrate can be found in their local structures. The type I clathrate structure is composed of Ge₂₀ dodecahedra and Ge₂₄ tetrakaidecahedral cages, while the Ba₂₄Ge₁₀₀ structure is composed of Ge₂₀ dodecahedra and Ge₂₀ open cages. Figure 3 compares the local connections of these cages in the two structures. Here, if the four germanium atoms (closed spheres in Fig. 3a) are removed from the Ge₂₄ cage of the type I clathrate, the arrangement of the remaining pentagonal faces is almost the same as that in $Ba_{24}Ge_{100}$ (Fig. 3b). On removal of the four germanium atoms, each of the eight atoms marked with an asterisk in Fig. 3a loses one bond and becomes a three σ -bonded atom. In Ba₂₄Ge₁₀₀, these atoms coordinate to the Ba(2) atoms to form the Ba(2)Ge₈ pseudo-cubic structural units.

FIG. 3. Comparison of the local structure between (a) the type I clathrate and (b) $Ba_{24}Ge_{100}$.

Standard Deviations in Parentheses					
Ge(1)-Ge(2)	2.55	7(2) Å × 3	Ge(4)-Ge(2)	2.477(2) Å	
			-Ge(2)	2.547(2) Å	
Ge(2)-Ge(1)	2.55	7(2) Å	-Ge(3)	2.573(2) Å	
-Ge(2)	2.59	1(3) Å	-Ge(5)	2.544(2) Å	
-Ge(4)	2.47	7(2) Å			
-Ge(4)	2.54	7(2) Å	Ge(5)-Ge(3)	2.486(2) Å	
			-Ge(4)	2.544(2) Å	
Ge(3)-Ge(4)	2.57	$3(2)$ Å $\times 2$	-Ge(6)	2.555(2) Å	
-Ge(5)	2.48	$6(2)$ Å $\times 2$			
			Ge(6)-Ge(5)	2.555(2) Å × 2	
			-Ge(6)	$2.511(5)$ Å $\times 2$	
Ba(1)-Ge(1)	4.02	1(4) Å	Ba(3)-Ge(1)	$3.517(1)$ Å $\times 2$	
-Ge(2)	3.50	$4(2)$ Å \times 3	-Ge(2)	$3.674(2)$ Å $\times 2$	
-Ge(2)	3.56	$9(2)$ Å \times 3	-Ge(2)	$3.662(2) \text{ Å} \times 2$	
-Ge(3)	3.48	$2(1)$ Å \times 3	-Ge(3)	4.192(1) Å × 2	
-Ge(4)	3.39	$3(2)$ Å \times 3	-Ge(4)	$3.672(2)$ Å $\times 2$	
-Ge(4)	3.57	$2(2)$ Å \times 3	-Ge(4)	3.916(2) Å × 2	
-Ge(5)	3.69	$2(2)$ Å \times 3	-Ge(5)	4.290(2) Å × 2	
-Ge(6)	3.41	4(3) Å	-Ge(5)	4.394(2) Å × 2	
Average	3.55	4 Å	-Ge(5)	$3.338(2) \text{ Å} \times 2$	
			-Ge(6)	$4.017(2)$ Å $\times 2$	
Ba(2)-Ge(1)	3.92	$1(3)$ Å \times 2	Average	3.867 Å	
-Ge(5) 3.421		$1(2)$ Å \times 6			
Average	3.54	6 Å			
Ge(2)-Ge(1)-Ge	e(2)	96.55(9)°	Ge(2)-Ge(4)-Ge(2)	100.67(6)°	
Ge(1)- $Ge(2)$ - $Ge(2$	(4)	107.27(9)°	Ge(2)-Ge(4)-Ge(3)	110.23(6)°	
Ge(1)-Ge(2)-Ge	e(2)	$111.71(7)^{\circ}$	Ge(2)-Ge(4)-Ge(5)	111.44(7)°	
Ge(1)- $Ge(2)$ - $Ge(2$	(4)	119.14(7)°	Ge(2)-Ge(4)-Ge(3)	109.12(7)°	
Ge(2)-Ge(2)-Ge	e(4)	109.37(8)°	Ge(2)-Ge(4)-Ge(5)	116.37(7)°	
Ge(2)-Ge(2)-Ge	e(4)	107.31(4)°	Ge(3)-Ge(4)-Ge(5)	108.74(7)°	
Ge(4)-Ge(2)-Ge	e(4)	101.30(6)°	Ge(3)-Ge(5)-Ge(4)	100.59(6)°	
Ge(4)-Ge(3)-Ge	e(4)	106.46(10)°	Ge(3)-Ge(5)-Ge(6)	102.91(6)°	
Ge(4)-Ge(3)-Ge	e(5)	110.82(4)°	Ge(4)-Ge(5)-Ge(6)	102.23(7)°	
Ge(4)-Ge(3)-Ge(5) 110.63(4)°		110.63(4)°	Ge(5)- $Ge(6)$ - $Ge(5)$	113.45(5)°	
$Ge(5)-Ge(3)-Ge(5) 107.51(11)^{\circ} Ge(5)-Ge(6)-Ge(6) 105.12$				105.12(6)°	

TABLE 4 Selected Bond Distances and Angles for Ba₂₄Ge₁₀₀ with Standard Deviations in Parentheses

CONCLUSION

Single crystals with a composition of $Ba_{24}Ge_{100}$ were grown from a melt with a nominal composition of $BaGe_4$. X-ray structural analysis has revealed that the crystal has a clathrate structure very similar to that of K_6Sn_{25} . Although the structure appears to be very complicated, the local structure can be derived from the type I clathrate structure, M_xGe_{46} , by removing four Ge atoms from the Ge₂₄ cage in the type I structure.

ACKNOWLEDGMENTS

This study was partially supported by Grants-in-aid for Scientific Research on the Priority Areas "Fullerenes and Nanotubes" and "The Chemistry of Inter-element Linkage" from the Ministry of Education, Science, and Culture of Japan. This study has been carried out as a France-Japan Joint Research Project supported by the Japan Society for the Promotion of Science (JSPS). The authors thank Dr. C. Cros for valuable discussions.

REFERENCES

- J. S. Casper, P. Hagenmuller, M. Pouchard, and C. Cros, *Science* 150, 1713 (1965).
- C. Cros, M. Pouchard, and P. Hagenmuller, J. Solid State Chem. 2, 570 (1970).
- C. Cros, M. Pouchard, and P. Hagenmuller, C. R. Acad. Sc. Paris 4764 (1965).
- S. Yamanaka, H. Horie, H. Kawaji, and M. Ishikawa, Eur. J. Solid State Inorg. Chem. 32, 799 (1995).
- 5. H. Kawaji, H. Horie, H. Yamanaka, and M. Ishikawa, *Phys. Rev. Lett.* **74**, 1427 (1995).
- S. Yamanaka, H. Horie, H. Nakano, and M. Ishikawa, *Fullerene Sci.* Technol. 3, 21 (1995).
- S. Yamanaka, H. Kawaji, and M. Ishikawa, in "Material Science Forum Vol. 232, Cluster Assembled Materials" (K. Sattler, Ed.), pp. 103–118, Trans Tech Publication, Zurich, 1996.
- 8. E. Busmann, Z. Anorg. Allg. Chem. 313, 91 (1961).
- Von J. Witte, H. G. Schnering, and M. von W. Klemm, Z. Anorg. Allg. Chem. 327, 260 (1964).
- K. H. Janzon, H. Schafer, and A. Weiss, Z. Anorg. Allg. Chem. 372, 87 (1979).
- S. Yamanaka, E. Enishi, H. Fukuoka, and M. Yasukawa, *Inorg. Chem.* 39, 56 (2000).
- 12. J. Gallmeier, H. Schäfer, and A. Weiss, Z. Naturforsh. B 22, 1080 (1967).
- 13. A. Betz, G. Oehlinger, and A. Weiss, Z. Naturforsch. B 35, 397 (1980).
- J. T. Vaughey, G. J. Miller, S. Gravelle, E. A. L.-Escamilla, and J. D. Corbett, J. Solid State Chem. 133, 501 (1997).
- 15. Von R. Schäfer and W. Klemm, Z. Anorg. Allg. Chem. 312, 214 (1961).
- E. B. Sokolov, V. M. Glazov, and V. K. Prokofeva, *Izv. Akad. Nauk* SSSR, Neorg. Mater. 6 (3), 580 (1970).
- N. L. Kutsenok and T. I. Yanson, *Izv. Akad. Nauk SSSR*, *Met.* 2, 204 (1987).
- 18. J.-T. Zhao and J. D. Corbett, Inorg. Chem. 33, 5721 (1994).
- 19. T. F. Fässler and C. Kronseder, Z. Anorg. Allg. Chem. 624, 561 (1998).
- 20. R. Kröner, R. Nesper, and H. G. von Schnering, Z. Kristallogr. 182, 164 (1988).
- H. G. von Schnering, R. Kröner, W. Carrillo-Cabrera, K. Peters, and R. Nesper, Z. Kristallogr. (NCS) 213, 665 (1998).
- G. M. Sheldrick, "SHELXS97, Program for the Solution of Crystal Structures," University of Göttingen, Germany, 1997.
- H. Imoto, S. Hayakawa, N. Morita, and T. Saito, *Inorg. Chem.* 29, 2007 (1990).